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Some recent developments for the validation of nonlinear models built from data are reviewed. Besides
giving an overall view of the field, a procedure is proposed and investigated based on the concept of dissipative
synchronization between the data and the model, which is very useful in validating models that should repro-
duce dominant dynamical features, like bifurcations, of the original system. In order to assess the discriminat-
ing power of the procedure, four well-known benchmarks have been used: namely, Duffing-Ueda, Duffing-
Holmes, and van der Pol oscillators, plus the Hénon map. The procedure, developed for discrete-time systems,
is focused on the dynamical properties of the model, rather than on statistical issues. For all the systems
investigated, it is shown that the discriminating power of the procedure is similar to that of bifurcation
diagrams—which in turn is much greater than, say, that of correlation dimension—but at a much lower

computational cost.
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I. INTRODUCTION

Model building from data has been of great interest for
many years within the community of nonlinear dynamics
since one of the first works in this field [1]. For the last 20
years or so, many different procedures have been put forward
for building nonlinear models from data. In a sense, the field
of model building is now rather mature within the commu-
nity of nonlinear dynamics.

After building a model it is important to know if such a
model is in fact a dynamical analog of the original system.
An answer to that question is searched for during model
validation. Among the several issues concerning model
building, model validation is probably the one that has re-
ceived the least attention. For instance, in [2] an interesting
discussion of several aspects of global modeling is found;
however, model validation is hardly mentioned.

Many of the tools for model validation that were com-
monly used by the mid-1990s were investigated and com-
pared in [3]. The main conclusion of such a work was that if
a global model of a system is required, then one of the most
exacting procedures for model validation is to compare the
model bifurcation diagram to that of the true system. Two
similar diagrams1 point to two entities (usually system and
model) which display the same dynamical regimes over a
rather wide range of parameter values. In fact it is widely
acknowledged that bifurcation diagrams “are one of the most
informative forms of presentation of dynamical evolution”
[4]. On the other hand, quantities such as dimension mea-
sures, Lyapunov exponents, phase portraits, and so on can
only quantify attractors and actually say very little about the
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1By similar it is meant that both model and system undergo the
same sequence of bifurcations and display the same dynamical re-
gimes for approximately the same values of the bifurcation
parameter.
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model ability to mimic the system as it evolves from one
dynamical regime (attractor) to another. Thus, good models
should match closely such geometrical invariants; however,
that matching is insufficient on its own to guarantee the qual-
ity of such models [5]. In fact, it is known that even two
drastically different attractors may have similar fractal di-
mension or Lyapunov exponents.

Although bifurcation diagrams provide a very exacting
means of verifying the dynamical overall behavior of a
model, their practical use is somewhat limited to those cases
in which it is viable to obtain such a diagram for the original
system.2 Another practical difficulty is that model validation
using bifurcation diagrams is generally quite subjective, as
will be illustrated in Sec. IV. In addition, the numerical de-
termination of bifurcation diagrams could become rather de-
manding. In order to overcome such shortcomings of the
bifurcation diagrams as a tool for model selection, this paper
proposes a way of choosing from a set of candidate models
based on dissipative synchronization. To assess the perfor-
mance of the our method, bifurcation diagrams are used be-
cause they are known to be a hard test when the model dy-
namics are in view. Having said that, it is worth pointing out
that bifurcation diagrams have been used in model validation
in several contexts [6—16], where in some cases the systems
were autonomous (i.e., had no, time-dependent, exogenous
variables).

The remainder of the paper is organized as follows. Sec-
tion II surveys some of the most commonly used methods of
model validation applied to nonlinear dynamics. In that sec-
tion three rather recent developments are mentioned in some
detail. In Sec. III a procedure for model evaluation is pre-
sented. This procedure is based on dissipative synchroniza-
tion. The ideas are tested using three benchmark systems,
and the performance of the synchronization scheme is com-
pared to that of other methods in Sec. IV. The main conclu-
sions of the paper are provided in Sec. V.

’A very interesting example has been published recently by Small
and coworkers who have discussed the estimation of a bifurcation
diagram from a set of biomedical data [77].
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II. OVERVIEW OF SOME METHODS

In this section the aim is twofold. First, it is desired to
provide a glance as to how several authors have proceeded in
validating dynamical models. In browsing through the litera-
ture, only the last decade was of concern. The interested
reader is referred to [3] for a coverage of the field up to the
beginning of the 1990s. Second, three different approaches
for model validation, which seem to be rather different in
concept from the more “standard” procedures, will be briefly
pointed out.

Before actually starting to describe some results in the
literature, a few remarks are in order. First and foremost, the
challenge of model validation or of choosing among candi-
date models should take into account the intended use of the
model. Hence, a model could be good for one type of appli-
cations and, nonetheless, perform poorly in another. In the
context of this paper, the main concern is to assess the model
dynamics. A different concern, though equally valid, which
would probably require a different approach, would be to
assess the forecasting capabilities of a model. Second, it
should be realized that two similar though different problems
are (i) model validation, which usually aims at an absolute
answer like valid or not valid and (ii) model selection, which
usually aims at a relative answer such as model M is better
than model M, according to criterion C. Finally, when it
comes to model validation, the safest approach is to use
many criteria, rather than just one.

Although very popular in other fields, the computation of
various measures of prediction errors (one-step-ahead and
free-run) in the case of nonlinear dynamical systems is not
conclusive in what concerns the overall dynamics of the
identified model [3,17,18], though it does convey much in-
formation on the forecasting capabilities of a model.

Subjective though it is, the visual inspection of attractors
(or simply comparing the morphology of two time series) is
still quite a common way of assessing the quality of models
[18-32]. Such a procedure is not only subjective but also
ineffective to discriminate between ‘“close” models—that is,
models with slight, but important, differences in their dy-
namical behavior. What renders this procedure subjective is
the fact that no quantitative mechanism is used to compare
how close are two reconstructed attractors. In this respect the
work by Pecora and coworkers could be an alternative for
determining how close the original and model attractors are
[33]. To the best of our knowledge the statistic measures put
forward in the mentioned paper have not yet been used in the
context of model validation.

Still in relation to the visual inspection of attractors, it
should be noticed that in many practical instances there is
not much more that can be done consistently. For instance, in
the case of slightly nonstationary data, to compare short-term
predictions with the original data is basically the best that
can be done. Building a model for which the free-run simu-
lation approximates the original data in some sense is usually
a nontrivial achievement.’

*In this respect we rather disagree with [56] who consider free-run
simulation of models a trivial validity test.
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Other attractor features are still in common use when it
comes to model validation. Among such features the follow-
ing are frequently used:* Lyapunov exponents [17,34-38],
correlation dimension [17,18,36], location and stability of
fixed points [30,39,40],° Poincaré sections [17,41], geometry
of attractors [42], attractor symmetry [6,43], first-return maps
on a Poincaré section [44,45], probability density functions
of recurrence in state space [46], and topological features
such as linking numbers and unstable periodic orbits
(UPO’s) [47-49].

Before addressing a few rather recent techniques for
model validation of nonlinear dynamics, it is important to
mention that meaningful validation can only be accom-
plished by taking into account the intended use of the model.
A model that provides predictions consistent with the ob-
served data will probably not be a good model to study, say,
the sequence of bifurcations of the original system. On the
other hand, if a model is sought to forecast a given variable,
the statistical properties of the forecasts are certainly more
important than, for instance, to have the same linking num-
bers as the original attractor, assuming it exists.

A. Surrogate data hypothesis testing

A well-celebrated paper by Theiler and colleagues intro-
duced to the community of nonlinear dynamics the applica-
tion of surrogate analysis for hypothesis testing [50]. When
that paper was published, the main concern was to distin-
guish low-dimensional chaos from noise. Surrogate-based
techniques have since then multiplied in spite of many po-
tential pitfalls [51]. However, as a whole, well-conceived
surrogate analysis is an important tool to test for some spe-
cific features in the data.

Although estimations of the test statistics from model
free-run simulations and the data had been generously used
for model validation, Small and Judd were the first to suggest
to compare such simulations in the framework of surrogate
analysis [52]. The overall procedure put forward by these
authors was to use estimated models to produce a large num-
ber of time series and to use some test statistic to try to
assess if it is likely that the data could have been produced
by a model (or models) such as those used to produce the
surrogates. Although this procedure has not been duly ex-
ploited in the context of model validation, it seems to have
great potential especially when the requirements on the mod-
els have a greater weight towards statistics rather than dy-
namics.

Of course, a key point in this procedure is the choice of
the test statistic. For instance, suppose that the correlation
dimension or the largest Lyapunov exponent is chosen to
compare a set of free-run simulated data with the measured
data. Suppose further that the null hypothesis is that the mea-
sured data are compatible with the estimated model. Even if

*Some of such properties have been recently discussed in the con-
text of model validation in [78].

°In particular, it has been shown that fixed-point stability of
nonlinear models is consistent with breathing patterns found in real
data [79].
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FIG. 1. Graphical interpretation of (a) consistent prediction and
(b) inconsistent prediction [54]. In (a) the shaded region indicates
that there is a subset of forecasts that are indistinguishable from the
“true” state (x;,;) within observational uncertainty.

we cannot reject the null hypothesis, that does not guarantee
equivalence of dynamical behavior because quite different
attractors may have similar indices [53]. This is also true for
the correlation dimension.

B. Embedding-space consistent predictions

Another recent contribution to model validation which, in
a sense, is related to the one mentioned in the previous sec-
tion has been described in [54] and has been named consis-
tent nonlinear dynamics (CND) testing. In order to under-
stand the main idea behind the procedure by McSharry and
Smith, consider Fig. 1.6

Denote the “true” dynamics by G and a given model by
F. The “true” state at time i is indicated by x;; therefore, the
true state at time i+ 1 can be expressed as x;,;=G(x;). It is
also assumed that the observed state at time i is s;. The one-
step-ahead prediction of model F starting from the last avail-
able observation is §;,; =F(s;). The one-step-ahead prediction
error, also termed residual, is therefore &=s;.,—F(s;). Fur-
ther, it is considered that dim[x;]= dim[s;] and that s; is at the
center of an observational uncertainty sphere of radius e,
denoted by B(s;). The uncertainty within B (s;) is assumed
to be uniformly distributed and e is assumed known.

Starting from the sphere B (s;), model F is used to iterate
B.(s;) one step ahead. In practice, a finite number of poten-
tial states within B (s;) are produced and model F is iterated
once starting from each one of such states. Because of dif-
ferent rates of stretching in phase space, the sphere B (s;) is
deformed into F[B(s;)], which will only be an ellipsoid if
the dynamics is locally linear, but there is no need for this
assumption unless computation time is a problem and more
efficient schemes are required [54]. In Fig. 1, F[B(s;)] is
drawn as an ellipse only for convenience.

The region in phase space denoted by F[B(s;)] is the
region where the true state at time i+ 1 is likely to be found
given the model F, the observed initial condition s;, and the
uncertainty radius € associated with that observation. Now, at
time i+ 1 another observation of the state becomes available
s;,1 and, assuming that the uncertainty radius € has not
changed, B(s;,;) denotes the region in phase space where
the “true” state x;,, is likely to be found. Therefore, if there

%Both Fig. 1 and the nomenclature are based on [54].
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is any intersection of F[B (s;)] with B(s,,), there is no rea-
son to disqualify the prediction F(s;) given the observation
uncertainty. In that case it is said that prediction F(s;) is
consistent. This case is illustrated in Fig. 1(a), whereas the
case of inconsistent predictions is shown in Fig. 1(b).

This procedure is similar to the ideas mentioned in Sec.
IT A. The propagation of a large number of potential states
within B(s;) corresponds to producing surrogate forecasts
F[B.(s;], and checking if there is any intersection of
F[B_(s;)] with B(s;,;) amounts to verifying if the data are
significantly different from the surrogates. The main differ-
ences seem to be basically two. First, the test statistic in the
procedure proposed in [54] is the residual whereas in the
case of surrogate analysis there are quite a few options. Sec-
ond, the verification of the significance of the test statistic is
carried out in a rather geometrical setting in the case of CND
testing, rather than the more statistical procedure in the case
of surrogate analysis. On the other hand, the discussed ver-
sion of CDN testing seems less demanding from a numerical
point of view' and the procedure does provide state-
dependent information, a benefit not readily available with
surrogate analysis.

Before moving on it is vital to realize that the observa-
tional uncertainty € plays a critical role in this procedure. In
order to end up with meaningful results, there must be a
reliable way of estimating €. Otherwise, virtually any model
can be made to provide consistent predictions by unduly in-
creasing €.

C. Synchronization

As done in Sec. II B, let us denote the “true” dynamics by
G and a given model by F. However, in the present section it
is assumed that the dynamics are continuous—that is [55],

dx
E=G(X),
Y oo e
dt—F(Y) E(y-x), (1)

where it has been assumed that dim[x]=dim[y] and where
the matrix E denotes the coupling between the true system
and the model. The scheme illustrated in (1) will be referred
to as dissipative synchronization.

The rationale behind this procedure is as follows. Assume
the data x lie on a chaotic attractor. In many situations, pro-
vided E is adequately chosen and G=F, y —x. That is, the
model will synchronize to the system. In this case all the
conditional Lyapunov exponents associated with (1) become
negative.

If G and F differ slightly, the error e=y—x will not go to
zero but will stay around the origin of the error space. The
average distance to the origin of such a space will depend on
G(x)—F(x). Therefore such a distance (which in practice is a

"More sophisticated alternatives are discussed in [54].
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measure of quality of “synchronization”) is a measure of
how far the estimated model F is from the true dynamics G
[55].

In order to implement this scheme in practice the authors
suggested taking matrix E to be diagonal with only one ele-
ment different from zero. The authors then compare |x—z| —
where z is the model state vector without any driving force to
|x—y|. If |x—y| drops below a certain threshold (107> was
used in [56]) and is “clearly” smaller than |x —z|—that is, x
~y—and it is assumed that the model is synchronized to the
data, F should therefore be sufficiently close to G.

As often happens in the realm of model validation, this
procedure also is highly subjective, since it requires an ad
hoc threshold, mentioned in the previous paragraph. In what
concerns dissipative synchronization, it is well known that in
many cases by increasing the strength of the coupling (ma-
trix E) it is possible to force a greater degree of synchroni-
zation and, in some cases, even attain identical synchroniza-
tion [55]. For instance, in [56] the authors found that for
values of the coupling greater than 2, models of an electronic
circuit would synchronize with the measured data. On the
other hand, Letellier et al. [57] have found a lower bound of
0.1 for the coupling strength in order to guarantee synchro-
nization between the Rossler system and perturbed versions
of the original equations. It therefore becomes clear that it is
sometimes possible to synchronize even a poor model to the
data as long as the coupling strength is made sufficiently
large. In fact, is has been shown that even different systems
can synchronize, at a rather high cost [58].

Therefore although the concept of synchronization could
be useful in the context of model validation, it becomes ap-
parent that some adjustments are required to render the pro-
cedure more practical. Some steps in this direction will be
given in the next section. Before, it is noted that synchroni-
zation has been used in parameter estimation problems
[16,59-61].

III. DATA-MODEL SYNCHRONIZATION
FOR DISCRETE MODELS

In this section a procedure based on dissipative synchro-
nization is proposed in the context of model evaluation.
Compared to the first procedure put forward in [55], the
present method is different at least in three important aspects.
First, the method has been developed for discrete-time mod-
els. Second, the criterion for evaluating a model is not if the
model synchronizes (for the reasons discussed above) but
rather is the cost of synchronization. Consequently, the syn-
chronization scheme used does not seem to be critical since
we aim at a relative evaluation of models rather than an
absolute one.® Clearly, if the aim were to optimize synchro-
nization, other synchronization schemes would have to be
considered. It will be argued that better models cost less to
synchronize with the data, with respect to dissipative syn-

8This remark becomes even more important if we consider that in
some cases it is possible to synchronize totally different systems
[80].
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chronization. Therefore an index that measures the cost of
maintaining models synchronized will be used; see Sec.
III B. Third, in order to compare the cost of synchronization
in a meaningful way, it is necessary to guarantee that the
quality of the synchronization is similar. The following pro-
cedure will use the concept of class of synchronization de-
fined in [62]; see Sec. III C.

A. Main meotivation

It is assumed that the available data are scalar and discrete
sequences x(k) (output) and u(k) (input), for k=1,2,...,N.
In the case no input is measured, the procedure remains valid
with u(k)=0,V k. It is assumed that the data are correctly
described by

x(k) = g(hulk = 1)), (2)

where i, (k—1) is a vector composed of lagged values of the
data x and u up to and possibly including instant k—1. It is
not assumed that the embedding is regular, in the sense of
[25]. Finally, g is an unknown function that relates all the
variables in #,,(k—1) to the future output x(k).
Analogously, it is assumed that a model’ f has been ob-
tained from the given data such that x(k)=f(¢, (k—1))
+ &(k), where the deterministic one-step-ahead prediction of
the model is f((?/ux(k—l)) and &(k) is an error function. In
principle there is no need to assume that &(k) is white or that
is has a certain probability distribution. Here, (k1) is the
vector of model-independent variables. It is not assumed that
. (k—=1) and ¢, (k—1) include the same set of lags.
Initially, it is desired to verify if model f will synchronize
with the observed data. To investigate this, the following

dissipative synchronization scheme can be easily imple-
mented:

x(k) = g(l//ux(k - 1))»

$k) = f( (k= 1)) = h(k = 1), (3)

where h(k)=c(x(k)-y(k)) and ceR is a constant. It is
interesting to notice that in (3), besides the dissipative cou-
pling term, direct substitution of y with x has taken place. In
such a framework the one-step-ahead synchronization error
(OSASE) is defined as

e(k) = x(k) = $(k) = g (Wb = 1)) = [f(rulk = 1)) = h(k = 1)]

= c(x(k—=1) = (k= 1)) + [g($h(k = 1)) = f(fh(k = 1))]
=ce(k—1)+ &k—-1). (4)

It is instructive to see that Eq. (4) is fundamentally an
ARX (autoregressive with an exogenous input) model.
Therefore, the OSASE is a first-order autoregressive process
driven by the “exogenous” variable &(k—1). It is well known
that in order to have a nondiverging process, |c| < 1. More-

No assumptions are made concerning the type of model f apart
from the fact that it should be a discrete-time model.
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over, whereas the autonomous dynamics is governed by the
dissipative coupling (the autoregressive part), the overall be-
havior is determined by the driving function &(k—1) which is
simply a measure of the distance between the dynamics un-

derlying the data g(i4,.(k—1)) and the model f(¢, (k—1)).
Clearly, should the difference between these entities be neg-
ligible, é(k—1)=0 and e(k) would naturally tend to zero,
since |c| <1. Therefore, it is seen that the dynamical mis-

match between g(i,(k—1)) and f(i),.(k—=1)) is somehow
reflected in the OSASE e(k). Therefore e(k) conveys impor-
tant dynamical information and, at least in principle, it could
be used as a measure of model quality. In this particular

respect, the present procedure follows the main motivation
in [55].

B. Cost of synchronization

In many systems synchronization is always possible as
long as the coupling is sufficiently strong [55]. Because of
this, it seems useless to declare valid a model that is forced
to synchronize with the data. On the other hand, it is a fact
that the closer two dynamical systems are, the easier it is to
synchronize them. This last remark is taken to be our great
motivation to define a measure of the cost of synchronization
that later will be used to evaluate dynamical models.

The following working definition of cost of synchroniza-
tion will be used:

N
Joms(€) = lim \/12 (), (5)
N N Ny

where it is assumed that k=1 indicates the instant from
which synchronization is achieved and not the first value in

I
200 400 600 800 1000 1200 1400

1600 1800

the data sequence. Viewing h(k)=c(x(k)—y(k)) as the control
action required to maintain the model synchronized to the
data, it is possible to interpret J,,(c) as the energy required
to keep the model close to the data. It is stressed that in the
practical computation of Eq. (5) the transients experienced
by the model until it synchronizes with the data (if it ever
does) are not taken into account. This is welcome in practice
in so far as the effect of initial conditions is greatly dimin-
ished.

It should be noticed that there are many other ways in
which the coupling (and therefore the cost of synchroniza-
tion) can be defined. In particular [63] uses sinusoidal cou-
pling and [64] uses sigmoidal coupling. The choice of h(k) in
this paper was made to keep the coupling as simple as pos-
sible. In fact, the choice of i(k) is a linear approximation of
the two nonlinear coupling schemes used in [63,64]. Tt is of
paramount importance to remember that the aim in this work
is not to achieve high-quality synchronization but rather to
apply the same synchronization scheme to several systems
and decide which synchronizes with similar quality at a
lower cost. The following section will shed some light onto
how to assess and quantify synchronization quality.

C. Class of synchronization

In order to compare cost of synchronization in a meaning-
ful way, it will be necessary to guarantee that the quality of
the synchronization is of a certain type. To this end, the
concept of class of synchronization defined in [62] is
adapted.

Two synchronized systems will belong to the e class of
synchronization if and only if
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sup|le(®)]

suplle(k)[| + 1 <€),

Y k=1, (6)

where e(k) was defined in Eq. (4) and the dependence of the
synchronization on the linear feedback gain ¢ has been made
explicit. It is clear that 0= e(c) =1 and that e(c)=0 implies
x(k)=y(k) for that particular value of ¢. On the other hand,
€e(c)=1 points to asynchronous behavior. For practical rea-
sons, given a particular experiment for which a sequence of
synchronization errors e(k) is available, it is useful to con-
sider the maximum normalized synchronization error, de-
fined as

max|le(k)|| e (o)

_— = V k=1. 7
max|je(0)] + 1 0
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TABLE 1. Largest Lyapunov exponent (\) and correlation di-
mension (D,) for the attractors obtained with u(r)=11 cos(¢) and the
models for the Duffing-Ueda system. The last column shows the
average probability that the one-step-ahead predictions is within a
dynamically consistent region and, within parentheses, the mini-
mum and maximum values are given.

Model \ D, B.(s;,1) NF(s;)
Original 0.11 2.29+0.019

M, 0.09 2.31+0.001 99.8%(92-100)
M, 0.09 2.24+4x 1074 99.3%(63-100)
Ms 0.10 2.31+0.002 100%(99-100)
M,y 0.10 2.28+0.002 87%(29-100)

D. Comparing models

The procedure now being presented, as for most valida-
tion procedures, also has a certain degree of subjectivity.
In view of this, rather than artificially trying to declare a
certain model valid or not, the problem to be dealt with is to
choose what seems to be the best model within a set of
candidates. This has been referred to rather informally as
model evaluation rather than model validation. The latter
seems to suggest an “absolute” quality to the model, and it is
arguable if that would be the best way of addressing the
whole matter.

In comparing models, the two concepts presented in
Secs. III B and III C, are important. Given two models that
synchronize with the data in a similar way10 the model with
the “best dynamics” will typically be the one for which
synchronization can be maintained at a lower cost. Because
only one synchronization scheme (dissipative) is imple-
mented, it could turn out that assessing models with another
scheme would rank such a model in a different order. Though
this could turn out to be true, it seems that it is not likely.
Femat and coworkers, in a different setting, have varied the
intensity (gain) of synchronization as well as model mis-
match while computing a given performance index. For
every synchronization case considered, models with less
mismatch could always be recognized without ambiguity
(there are no crossings in the performance plots; see their
Fig. 4) [65].

The suggested approach to the problem is as follows.
Suppose it is desired to choose among two models M and
M, the one with dynamics “closer to the dynamics underly-
ing the data.” First of all, the smallest maximum normalized
synchronization error for each model is determined; that is,
we search for elln(cl):min[erln(c)] and erzn(cz)zmin[eﬁ](c)],
where the minimization is carried out over the range 0<<c
< 1. If the found values are quite different, the models can be
ranked without further computations. However, if erln(cl)
=~ efn(cz), then the criterion to rank the models becomes the

"In this case we shall speak of two models that belong to the
same class of synchronization or that have comparable maximum
normalized synchronization errors.
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FIG. 4. Correlation dimension curves for the models. The x axis is, as usual, log;, €. Each plot shows the curves for different realizations
of the attractor at A=11, obtained initializing the models at different initial conditions. The thick dashed line is the curve that corresponds
to the data produced by the differential equation (8): (a) M, (b) M, (¢c) Mj3, and (d) M.

cost required to maintain models M, and M, at E:n(cl)
~ € (c,)—that is, J! (c;) and J2 (c,), respectively. The
model that achieves the smallest maximum normalized syn-
chronization error at the lowest cost is likely to have better

overall dynamics, as illustrated in the next section.

IV. NUMERICAL RESULTS

This section presents numerical examples that use well-
known nonlinear oscillators."" As pointed out by Gilmore
and Lefranc, the Duffing and van der Pol oscillators are
among the basic testbeds used in the study of dynamical
systems theory [66]. Also, the well-known Hénon map [67]
will be used. In order to assess the effectiveness of the pro--

"UThe data and code used are available from the authors on
request.

cedure put forward in Sec. III various aspects of the original
systems and of the models will be compared.

A. Duffing oscillator

In the present section, two different versions of the
Duffing oscillator will be investigated: the Duffing-Ueda os-
cillator [68] and the Duffing-Holmes oscillator [69]. The mo-
tivation for investigating both versions is simply that both
versions of the Duffing oscillator have received attention in
the literature. In addition to that, over the parameter range
investigated in this paper, both versions present quite differ-
ent behaviors.

1. Ueda equation
The Ueda version of the Duffing oscillator is [68]

V+ky+y’ =ul). (8)
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FIG. 5. Bifurcation diagrams with u()=A cos(r) and 4.5=A =12 for (a) M, (b) M., (c) M3, (d) My, and (e) original equation (8). M,
seems to be the best model in what concerns the sequence of bifurcations.

In this example, k=0.1. Equation (8) was simulated

with the input wu(f) shown in Fig. 2(a), thus
yielding the output shown in Fig. 2(b). Numerical
in-tegration was carried out using a fourth-order

Runge-Kutta algorithm with integration interval of
w/3000. Subsequently the data were sampled at
T,=7/60 and used to obtain four models: M;, M,, M,
and M 4+
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FIG. 6. Maximum normalized synchronization error ey(c)
against the cost of synchronization, J,,,(c), for Duffing-Holmes
models: (dot-dashed line) M, (dashed line) M,, (solid line) M5,
and (solid line, boldface) M,. Each point on the lines corresponds
to a particular value of c.

Figure 3 presents some results concerning the synchroni-
zation scheme discussed in Sec. III. First, Fig. 3(a) shows
how the class of synchronization varies with the linear feed-
back parameter ¢. Second, Fig. 3(b) shows J,,(c)—see Eq.
(5) — for each value of ¢, which defines a class of synchro-
nization.

From Fig. 3(a) it can be seen that the smallest
maximum normalized synchronization error of model M3 is
€ (c3)=3.6X1073 (c;~0.2), whereas for M, €' (cy)=3.2
X 1073 (c4=~0.6). As for the cost of synchronization, it is
interesting to notice that although J2_ (c)=J% (c) for the
whole range of values of ¢, J>_ (c3) <J (c,). This poses a
composite scenario (very common in multiobjective optimi-
zation) in which no Pareto solution is best in all the objec-
tives. In this case, M, is better in the sense that it attains the
smallest synchronization class among all the models investi-
gated. This means that it was able to attain the highest degree
of synchronization. On the other hand, it can be seen that,
considered at ¢~0.5, model M, attains the same value of
the maximum normalized synchronization error as for model
My at ¢=~0.2—that is, € (0.2)=€!(0.5)~3.6X107. The
analysis proceeds by verifying which of the two models
achieves such a level of synchronization at a lower cost. In
that respect it can be verified that J2, (0.2)<J* (0.5). In
other words, M reaches a particular level of synchroniza-
tion at a lower cost than M. As a practical rule of thumb,
the “clear” lowest maximum normalized synchronization er-
ror is used to rank models. More sophisticated criteria would
be worth trying.

Table I shows the largest Lyapunov exponent and the
correlation dimension computed for attractors of the original
system and for the models. The last column in Table I shows
the average probability that the one-step-ahead prediction
is within a region consistent with the data. Minimum and
maximum values are provided in parentheses. That is,
B (s;;;) NF(s;) is a measure of the shaded region indicated
in Fig. 1(a). To compute this value, validation data, with
length N=250, were used. For each of those data points, 300

PHYSICAL REVIEW E 74, 066203 (2006)

TABLE II. Largest Lyapunov exponent (\) and correlation di-
mension (D,) for the attractors obtained with u(r)=0.3 cos(s) and
the models for the Duffing-Holmes system.

Model A D,

Original 0.20 2.40+0.021
M, 0.18 2.35+0.002
M, 0.17 2.31+0.002
M; 0.19 2.38+0.001
M, 0.18 2.36+0.001

points—taken from a uniform distribution—within a hyper-
sphere centered at s; and with radius € were propagated using
the model F. Therefore, for each model 75 000 predictions
were performed. Also, € was determined as twice the stan-
dard deviation of the uncertainty in the data.'”

In this and future examples, the largest Lyapunov expo-
nent was computed following [70] (for the case of known
equations) and the correlation dimension was estimated us-
ing the algorithm discussed in [71].

Based on the results in Table I, it would be hard to choose
a model. The clearest indication seems to be that model M,
is slightly inferior to the others, especially based on D, and
that M, is somewhat less consistent in what concerns one-
step-ahead predictions.

Figure 4 shows the correlation dimension curves for
25 realizations obtained for each model (thin lines) and
for the original data (thick dashed line) computed using
the method described in [72]. All the time series were
composed of 11000 observations. To produce that
figure the four models plus the original equation (8) were
simulated for a sinusoidal input of frequency w=1 rad/s and
A=11. The different realizations for the models were ob-
tained by simulating the models from randomly chosen ini-
tial conditions taken on the attractor. From Fig. 4 it seems
that models M, and M, are marginally acceptable if the
first portion of the plots is considered. On the other hand,
M, would be the best model if the mid to last portions of
the plots were considered. The subjectivity in choosing
the working range in this procedure has already been pointed
out [72].

Figure 5 shows the bifurcation diagrams for each model
and the original system, obtained with u(f)=A cos(z). The
procedure to produce such plots is quite intensive. On the
other hand, it must be appreciated that a bifurcation diagram
is of a much wider character than indices such as the largest
Lyapunov exponent or the correlation dimension, which
quantify one single attractor. Based on the bifurcation dia-
grams it seems fair to conclude that model M, has the clos-
est overall dynamics to the system. Unfortunately, it is very
hard to reach this conclusion based on the data in Table I
which cost far less to be estimated than the bifurcation dia-

2No noise was added to the data in this example. The uncertainty
was quantified based on model residuals that are a by-product of the
training stage. In this example such uncertainty was around 0.03%
of the data.
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FIG. 7. Bifurcation diagrams with u(z)=A cos(r) and 0.22=A =0.35 for (a) M, (b) M,, (c) M3, (d) My, and (e) original equation (9).

Based on this figure, M3 seems to be the best model.

grams. Moreover, it is not always feasible to produce such
diagrams for real systems.

Therefore, based on the proposed synchronization scheme
and many other criteria, it seems adequate to state that mod-
els M5z and M, are clearly superior to M; and M, in

overall terms, and although M3 is quite competitive, M,
seems best overall.

As pointed out in Sec. III A, the model class of f is
not taken into account in any part of the analysis. In
the present and following examples the models used
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TABLE III. Largest Lyapunov exponent (A\) and correlation di-
mension (D,) for the attractors obtained with u(r)=17 cos(4t) and
the models for the van der Pol oscillator.

Model N D,

Original 0.33 2.44+0.001
M, 0.32 2.46+0.003
M, 0.34 2.53+0.001
M; 0.31 2.41x0.012

were nonlinear discrete-time polynomials. As a part of
this first example, however, two additional neural-network
multilayer perceptron models were considered.”® One
model was known to reproduce fairly well the original
dynamics of the Duffing-Ueda oscillator whereas the other
one not [6]. Following the procedure described in this
paper the best network model did achieve a much lower
maximum normalized synchronization error at a much
smaller cost than the network with poor dynamical perfor-
mance, thus confirming the scenario observed for models
M, M,, Ms, and M, Finally, it is mentioned that
in [49] a continuous-time nonlinear polynomial model
was obtained and made to synchronize by dissipative
coupling. The authors validated such a model by means of
topological analysis and suggested that the model topological
validity was consistent with the fact that it was possible to
synchronize it to the data. The fact that three different model
classes showed consistency between synchronization and
validation results suggests that the proposed procedure is, in
fact, somewhat robust to the model class.

Before moving on, it is pointed out that in view of the
results discussed in this example, in the next examples the
CND testing and the correlation curves will be omitted and
only nonlinear polynomial models will be considered.

2. Holmes equation

The Duffing-Holmes system is [69]
J+ 8y — By +y>=A cos(wt). 9)

As before, data were obtained by numerically integrating
Eq. (9) with 6=0.15, B=1, A=0.3, and w=1 rad/s, for
which the system settles to a chaotic attractor. Data sampled
at Ty=7/15 were used to obtain four models: M, M,, M,
and M.

The synchronization procedure discussed in Sec. III
yielded the results summarized in Fig. 6. That figure shows
the maximum normalized synchronization error (i.e., the es-
timated class of synchronization) against the cost of synchro-
nization. Each point on the lines in that figure corresponds to
a particular value of ¢. From Fig. 6 it is seen that although
min[efn(c)] is slightly smaller than min[e?n(c)], the cost of
synchronizing M3 is significantly smaller than that of syn-
chronizing M. Therefore, Fig. 6 suggests that M3 is supe-

SWe thank Dr. Gleison Amaral for providing such models. See
[6] for the details.
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FIG. 8. Maximum normalized synchronization error ey(c)
against the cost of synchronization, J,,,(c), for van der Pol models:
(dot-dashed line) M, (dashed line) M, and (solid line) M. Each
point on the lines corresponds to a particular value of ¢ which was
varied in the range 0=c¢=0.9.

rior to M,, because it was possible to find a value of cou-
pling such that the cost to synchronize M5 to the data with a
certain quality is smaller than for M, (and the other mod-
els). Another feature illustrated in that figure, is that M, is
similar to M3 in what concerns synchronization and the cost
to maintain it.

The largest Lyapunov exponent and the correlation di-
mension of the models are shown in Table II. In view of the
results for the Duffing-Ueda oscillator CND testing was not
performed in the present example or in the next. From the
data in the table, it seems that model M, is slightly worse
than the others. It is apparent that results such as those illus-
trated in Table II lack discrimination power.

The bifurcation diagrams shown in Fig. 7 suggest that
M, and M3 are the best, with M5 being somewhat superior.
M, and M, have many spurious chaotic windows. All the
models have a narrow periodic window which appears in the
original system just before A <0.32. In the case of M and
M, such a window appears just after A>0.32. Models M,
and M5 present such a window just before A <<0.32, as for
the original system. M,, however, still presents a spurious
chaotic window for A >0.32.

It is remarkable that, unlike for the Duffing-Ueda system,
in the case of the Duffing-Holmes system (and also for the
van der Pol oscillator as will be seen later) the input was a
single-frequency signal and therefore the output, based on
which the models were obtained, was on a single attractor.
Nevertheless, such data do convey a great deal of informa-
tion concerning how the original system bifurcates. In other
words, although the model-building data were located at a
single value of A in the bifurcation diagram, a rather wide
range of values was successfully covered by the models.

B. van der Pol oscillator

This example considers the modified van der Pol oscilla-
tor [73]

V+u(* =1y +y =u(). (10)
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FIG. 9. Bifurcation diagrams with u(r)=A cos(4t) and 4=A =25 for (a) M, (b) M,, (c) M3, (d), and original equation (10). M, and
M, display several coexisting attractors. Based on this figure, M5 seems to have the diagram which is closest to that of the original

oscillator.

Equation (10) was integrated with ©=0.2, u(r)=A cos(wi),
A=17, and w=4 rad/s, which yields a chaotic attractor.
Data sampled at T,=7/80 were used to obtain three models,
My, M,, and M, for which the information on synchroni-
zation class and cost is summarized in Fig. 8. Such results
suggest that M is probably the best overall model because,
although the cost of synchronization is roughly the same for
the three models (it is slightly smaller for M3), the maxi-
mum normalized synchronization error is significantly
smaller for Ms.

The largest Lyapunov exponent and the correlation di-
mension of models M, M,, and M3 are shown in Table
III. From the data in the table, it seems that model M is
closest to the original system, with M5 being also quite good
and M, being the poorest model.

Bifurcation diagrams of the original oscillator and the
three models are shown in Fig. 9. Based on this figure, M;

seems to be the best overall model, although the several co-
existing attractors make a detailed comparison difficult. The
results reported in Table III and in Fig. 9 seem to confirm
that the best overall model is, in fact, Ms;.

It is worth pointing out that in many other studied ex-
amples (including the ones presented in Secs. IV A 1 and
IV A 2) the comparison of bifurcation diagrams was quite
straightforward. In all such cases, the maximum synchroni-
zation error and the cost of synchronization consistently in-
dicated the model with the best bifurcation diagram. How-
ever, the comparison of bifurcation diagrams in this example
is particularly subjective. It would be hard to state that the
diagram in Fig. 9(c) is “good,” but it is easier to accept that
it is closer to the original diagram in Fig. 9(d) than the first
two, Figs. 9(a) and 9(b). The subjectivity in the comparison
of bifurcation diagrams is, in fact, a major motivation to
follow the method proposed in this paper.
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y(k—=1)? as an independent variable (i.e., in the domain of the map). The associated parameter has been labeled 6. For the original map

011=p

C. Hénon map

This example considers a two-dimensional autonomous
system, the Hénon map [67]:

y(k)=1+03y(k—-2)+ By(k—1)2, (11)

which settles to a chaotic attractor for SB=-1.4. The bifurca-
tion diagrams of map (11) and of other three (similar) maps
are shown in Fig. 10. A glance at Fig. 10 suggests that,
among the three models considered, the bifurcation of M3 is
closest to that of the original map. This conclusion can be
arrived at, at a much lower computational cost, by using the
procedure proposed in this paper which yields the results
shown in Fig. 11. From that figure it is readily seen that M
has the smallest maximum normalized synchronization error
(min[€’ ]=~0.08).

V. DISCUSSION AND CONCLUSIONS

The issue of model evaluation has been addressed in this
paper. An overall look at the literature in the field of nonlin-
ear dynamics has been presented. Aspects of model evalua-
tion, such as forecasting performance (i.e., free-run predic-
tions errors) and geometrical performance (i.e., correlation
dimension of model attractors), have received due attention
in the literature. On the other hand, important though it is, it
is the authors’ impression that the issue of comparing model
dynamical performance is relatively neglected in the litera-
ture.

Many of the “absolute” measures that are currently used
to compare models are, in a sense, geometrical rather than
dynamical. A truly dynamical approach to model character-
ization can be achieved by means of topological analysis.
However, such a procedure is known to be very intensive,
time consuming, is limited to systems of dimension up to 3
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and requires rather large (~100 cycles) amounts of over-
sampled and stationary data. The payoff for such an effort is
that the template and bifurcation patterns of a system are
connected and, even more, a template can be validated in
absolute (rather than relative) terms [66]. In practice this
means that a template can be declared valid, rather than “bet-
ter than” some other template.

After comparison of some procedures for model evalua-
tion commonly used a decade ago (and the overall scenario
is very much the same today), it was concluded that bifurca-
tion diagrams had high discriminating power due to the fact
that they describe the sequence of dynamic regimes over a
wide range of parameter values [3]. Such a procedure, how-
ever, has two main practical drawbacks. In the first place,
and probably the most serious one, it is not always viable to
obtain a bifurcation diagram directly from the original sys-
tem in order to serve as a standard. In the second place, to
produce bifurcation diagrams could become time consuming
and subjective. Therefore, to use bifurcation diagrams as a
criterion for model evaluation, in an automatic setting, does
not seem feasible at the moment.

This paper has also pointed out three specific potential
procedures for model evaluation: a synchronization-based
scheme [55], a surrogate-based view of the problem [52],
and, more recently, an approach based on testing for consis-
tent predictions [54]. All these methods are rather subjective.
Also such approaches seem to be better suited for comparing
models rather than for declaring a model “valid,” which
would not be the best way of looking at the problem anyway
[74].

In the context of this paper, special attention is given to
the synchronization procedure originally suggested in [55].
The underlying thought in that work was that valid models
can be made to synchronize with the data. One of the prac-
tical difficulties with this approach, which was developed for
continuous-time models, is that even poor models can be
forced to synchronize. Hence, under a stronger synchroniz

0.09 0.1

ing drive, an “invalid” model can be declared “valid.” This
might account for the fact that the mentioned procedure has
not been used in the realm of model validation.

This paper proposed and discussed a method for model
evaluation that will find its roots in [55]. Some important
modifications were carried out in order to overcome some of
the major difficulties of the former work. First, a synchroni-
zation scheme suitable for discrete-time models was devel-
oped. Second, rather than approaching the problem of model
validation from a “synchronize versus nonsynchronize”
viewpoint, the model evaluation carried out in this paper
assesses the guality and cost of synchronization. In this paper
such features were considered, in a sense, independently. It
would be interesting to have a single composite measure that
combined both. This is left for the future.

The procedure has been tested for three well-known non-
linear oscillators for which detailed bifurcation diagrams can
be obtained. In this framework there is no need for bifurca-
tion diagrams. However, because of the high discriminating
power of such diagrams, they were used as a means to assess
the main features of the synchronization-based scheme. In all
cases studied great consistency was found in the results using
bifurcation diagrams and our scheme. It is believed that the
method proposed in this paper, in what concerns model com-
parison, is almost as effective as the use of bifurcation dia-
grams but with the advantage that computation time could be
two or even three orders of magnitude shorter than in the
case of bifurcation diagrams.

Finally, the authors are not aware of any theoretical re-
sults that could be used to prove the generality of the results
reported in this paper. An interesting question would be to
investigate theoretically the connection between bifurcations
and synchronization. In this respect two related results are
provided. First, using arguments based on shadowing theory,
it has been recently concluded that the one-step-ahead pre-
diction conveys important information on model dynamics
[75] which seems to be confirmed by (4) and the subsequent
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discussion. Second, for continuous-time models, it has been
shown that the control action needed to achieve identical
synchronization equals the vector field mismatch between
the two considered systems [62]. Such a result has been re-
cently extended to discrete-time systems, and it has been
shown that the synchronization effort is a measure of the
dynamical structural mismatch between the two considered
systems [76]. In any case, such considerations should only be

PHYSICAL REVIEW E 74, 066203 (2006)

regarded as starting points for a more precise and theoretical
analysis of the procedure presented in this paper.
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